USE OF THE CCITT SDL

TO EMGINEER COMMUNICATION SOFTWARE

Timas Moko

Helsinki tniversity of Technology
Telecomminication Switching Laboratory
Otakaari SR
02150 Espoo 1%

Finland

Abstract

The pictorial CCITT Specification and Description Languags {5DL) is
beécoming a well-established tool in telecommunication programming.

The program—like representation of SDL, known as SDL/PR, will
certainly add the attraction of the language, because it allows
machine-proceasing cf the specification. In this paper the

construction of an experimental SDL-design toel is intreduced. SDL

is aimed for specification purposes, but
based on state machine

softwars is

when the
models, the

implemented
correspomlance

between specificatior and implementation is cbvious,

1. INTRODUCTION

Communication equipments are composed of a
large number of units which are usually
distributed or geographically sepacated.
The interaction and cooperation of the
units is achieved by the interchange of
signals according to the agreed set of
protovols., The only reiative orderiag of
cperations in the coacurrent processing of
the subsystems is acnieved by means of the
messzage exchanges. Tha use of state
diagrams to describe <omputer logic
circuits iz well established among
harcware deaigners, This paper describes
our advancement in developing stace
diagrams as software tools for building
maultimiproprocessor-based commanication
equlpment, The usa of state dipgrams is
actk restricted %o system design, it is
also used in program design, simulation,
testiog and documentatien,

The CCITT 3pecification and Description
Language (SDL} is a pictorial laaguage
which is similar to conventiceal flow
diagrams but has spgecial colpounents teo
deszribe program lpgic in terms of state
rachine elements.

2. THE SDL-DESIGN CONCEPTS

The basic concept in nsing SDL- language is
to descrice the processing logic in terms
of states. A state can be defined as a
point of equilibrium wheres processing
remains dormant until an event occurs.
When an event occurs, the processing logic
is said tn be in transition. A state
transition terminates when the processing
logic enters the target state., Processing
will remain dormant once again until
another event occurs. During a tran=zition,
processing actions that are performed fall
into one of three categories:

{1} read, write and process dztez,

{Z} generate an external event for ancther
state machiae,

{3) generate an internal event e.g. set a
time-out.

The use of monclithic model to describe
the communication system as a single state
machine is acceptable at system level, as
long as the number of 3tates remains
small, otherwize z large system becomas2
difficult to manage in a single Ievel.
fegspite this constraint, our goal iz to
document ths program design in more detail

than at the system specification lavel. In
order to specify all the micro steps of
the procesaing logic the monolithic medel
could not be used, It therefore becames
necessary to structure our software as a
number of state machines, with each state
machine performing specific funetion. Such
an approach alleviated the problem of
maintaining an unmanageable number of
atates,

3. THE CCITT SPECIFICATION LANGUAGE

The CCITT Specification and Description
Language {S50L) became a CCITT
recommendation in 1976, and a refined
versiocn was published by CCITT in 1980,
5DL has been developed in parallel with
the other two CCITT languages; the high-
level programming language CHILL and the
man=machine language MML. During the
development of the languages the
desirability of a harmonized language
family has been considered and recognized,
i.e., the use of common concepts and
terminology. This correlation between the
languages has been cbtained; for example,
both CHILL and SDL contain a number of
common concepts, The graphical represen-
tation is considered to be the version
most easily understandable and usabla for
humans. However, there is also need for a
"program-like" representation form,
especially for computer storage and
manipulations. The CCITT study group IX
has recently issued a report of standardi-
zation of the SDL/PR-language (79, which
is program-like representation form of the
graphical SDL/GR-presentation.

The cbject in SDL/FR that i3 actually
performing the logical function is called
a PROCESS. Each procecs is regarded as a
flnite-state machine that can be represen-
ted by a cleosed directad graph. A BLOCK is
defined to contain cne or more processes,

The communication between processes is
defined to be parformed only via sending
and receiving signalc. An SDL-process is
defined as an object that is either a
state awaiting an INPUT (the reception of
a signal) or is in transition. A STATE is
defined as a conditior in which the
actions of a process are suspended and
awaiting an input. A transition is defined
to be a seguence of actions which occurs
when a2 process changes from one state to
ancother in response toc an input.

In a transition there are three types of
actions allowed:

* QUTPUT which is an action generating a
eignal which in turn will act as an
INRPUT elsewhera;

* DECISIOM which is an action asking a
question, usually concerning the local
database, to which the answer can be
obtained at that instant and which
chooses one of several paths to continue
the transition;

* TASK which is an action within a
transition which is neither a decision
nor an output, and often results a
change in the database.

In addition to this, there is one more
concept defined within a process, that is,
the SAVE. This concept has been defined in
order to clarify the semantics of inter-
process communication. It saves an
inceming signal (without receiver), other-
wise the signal is discarded.

One or more transition flow lines can
converge. This is accomplished by the use
of the keyword JOIN and the point of
convergence is dencted by a label. A
transition is otherwise terminated with a
target-state symbol NEXTSTATE.

The keyword INTERNAL distinguishes
internal inputs/outputs from external
inputs/outputs (i.e., external being the
default option).

An SDL graph consists of a number of
graphical symbols, each representing one
of the subconcepts of a process, connected
by directed flowlines. The symbols used
are shown in figure 1.

Figure 2 shows an example of SDL/PR-
language. The corresponding SDL/GR-grapi
is shown in figure 3.

4. MACHINE REALIZ&TIQH OF STATE MACHINES

A state machine can be realized in a
computing machine as a graph-driven parser
which has the fellowing concepts:

{1) a state transition graph representing
transitions of a state machine,

{2) state execotion routines performing
actions after events causing state
transitions.

BEach node in the graph is a state. At esach
node there are a number of data items
which represent the pre-defined events,
routine entry arguments and the entry
address of the action routine. The parser
amulates the state machine by matching an
input ewvent with those at the resident
acde. If a mateck is found, the state
execution routine (transition string) is
entered with an approriate argument
representing the event {i.e. external or
internal input}, After the axecution cf

':“thu transition string, a value is returned

to indicate which target state should be
reached, If no match is found, the input
event is discarded in case there is neo
active SAVE-operation concerning the
event,

There are many advantages of this
technigue. Pirstly, the program
constructed in this manner is highly
modular because the software is
constructed in two levels, The overall
logic flow is readily displayed in the
§DL-graph. Detailed program logic can be
followed by reading the program code of
the transition strings. The other
advantage is that any change in the design
can be easily obtained by altering the
graph. However the most subtle ohe is the
reduction of software complexity, since
the large number of event matchings are
performed interpretively in a table-driven
manner, 5

To support multiple existences of a state
machine, a suitable indexing schema has to
be availaible, a natural ordering of such
existences can be achived e.g. from the
hardware adresses (port or line numbers).

5. DESIGN AND DOCUMENTATION FACILITIES

The use of SDL/PR-language provides
automatie generatien of graphical SDL-
documentation that is up-to-date, accurate
and eliminates the need of separate
documentation phases.

The diagrams produced can be used both as
an ald during the test phase as a part of
the final system design documentation.
Figures 2 and 1 are examples of the actual
tranaition description and its
documentation.

The BDL/PR-translator in itself is
programmable, to suit the specific needs
and documentation standards of the user.
The translation process is driven by
description of the source lianguage (the
grammar of the language in Backus-Haur
notation) and the description of the
corresponding graphical items and layout
of documentation. Different output devices
are available. The use of lineprinter e.g.
requires printing in line-by-line basis
and use of the standard ASCII-character
set,

At system level a simplified and lass
detailed documentation iz often required.
We have developed five levels of the
simplification algorithm:

(1) Remove TASKs {i.e. modification of
datal,

3

{2) Remove data-driven branches

(DECISIONs) with a common traget state
and common output, .

Remove transitions with a common
target state and commen output,

(4)
(5}

Omit QUTPUTs,
Preserve states only.

Consistency checks assure the designer
that the product has certain properties
which the implemented system must also
possess, In the design phase the product
is only partially finished, therefare the
consistency checks are made according to
programmable rules:

(1) Check the context-free SDL/PR syntax
only,

({2) Check that the target state and a
target label for JOIN exists,

(3) Check that the received signal exists
(is eventually available),

{4) Check that the receiver exist (signal

is eventually received).

Preliminary studies of an interactive
design tocl whose input is in the form of
drawings (with the aid of a ligth-pan)

has been made. The graphical display
represents a tiny "window" which can be
Ecrolled to view ar modify hidden parts of
the net. The main difficulties in the
design are the editing facilities and the
amount of processing time when a portion
of the large net is purged and the display
has to be reconstructed.

6. SIMULATION AND VALIDATIOM FACILITIES

SDL/PR-language does not facilitate
precise implementation of the data domain.
But as mentioned abpve, ocur system
supports a set of simplification
facilities which effectively cancel the
data by adding a certain amount
nondeterminism, Any approach to system
analysis must provide "multileval
support”. The concept of "level" refers to
the amount of detail preovided in a system
description. A common example is
communication protocol layers, where cne
layer provides a service to a higher layer
and uses the servieces of a lower layer;
only the specification of the service, not
the precise implementation details, are
regquired by the layer above, The stata-
exploration method of validation is both
time and space consuming. However, by
introducing sufficient abstraction and
restriction methods the overhead can be
eagsily avoided.

By multilevel support we mean that such a
specification must, in turn, be usable in
the implementation of a higher level of
system description in order to prove
higher level properties about a larger
system. The behaviour of the system is
defined by the concurrent execution of the
atomic actions of the state machines of
the system. A particular execution path of
such a system is a sequence of actions
where that sequence is one possible
interleaving of the actions. In order to
verify concurrent system we mist be able
to show that all possible interleavings of
the actions satisfy some correctness
criteria,

Addition of timing information may reduce
the amount of possible interleaving
exhibited by the system, thus reducing the
number of execution paths and the number
of possible combinations of states
produced by the system, Therefore, a
system that cannot be verified in the
absence of timing information may, in
fact, be correct with the addition of
timing information. Timing information is
usually represented by a set of
programmable timeocuts,

The analysis of the otherwise error-free
5DL/PR-language description is initiated
with the construction of the abstract
state machine models. In construction
there are number of choices available in
order to support the multi-level concept.
The goal cf the model are that it supports
both explicit timing specifications and
most importantly, that it supports
hierarchieal, multileval verification.
Bierarchical verification refers to the
process of decomposing a proof inte
smaller subprocfs and, conversely,
composing a set of proved specifications
into a proof of a larger system. The
following key ideas can be identified with
respect to the support of this capability.

* Ability to abstract a portion of a
gystem -- Often it is most natural or
efficient to prove things about a
"portion® of the system being verified.

* Composition of abstractions -- Once it
is proved that a subsyster implements
some abstraction, that abstraction must
be composable with other parts of the
system so that further proocfs can be
performed on the composition,

7. THE DESIGN SYSTEM IMPLEMENTATION

The 5DL-desigr system has been implemented
in LISP-language. LISP-programming has
many attractive features in constructing

experimental and/or programmable systems.
The development process is interactive and
eases the production of well-defined and
tested software modules. The uniformity of
the program/data-domain (while possessing
tempting features, such as the easy
implementation self-altering programs)
allows various tracing features to be
implemented.

The structure of SDL/PR-compilar is
divided into five phases:

(1) Translation of the SDL/PR-language
into LISP-expression i.e. into a
semantic net according to the programmed
syntax rules.

{2) Simplification of the net as required.

(3) Restructuring the net until the most
efficient topology has been found.

{4) Validation of the net as required.

{5) Translation of the net into
corresponding graphical symbols.

{see Figure 4)

8. EPILOGUE

Qur goal is not to produce a fully
automated system but to create a useful
tool to facilitate the production of
communication equipment. This tocl is used
in the design and documentation phase of
the multimicroprocessor data exchange (5),
In the productior of larger SPC-exchanges
there is specific needs (e.g. company-
oriented standards of documentation) which
our system is designed to solve. We believe
that most of the problems found in the
SPC-programming is the "abstractness™ of
the design object. Wher thera is a "real®
cbject such as a diagram immediately
available, the system is more comprehensi-

_ble and the problem is easier to pinpoint.

ACENOWLEDGEMENTS

Author wishes to thank prof. Rauke
Rahko and his staff, from the Tele-
communication Switching Laboratory, for
their support and practical discussions.

The theoretical background is to be
credited to a set of lectures by prof.
ILeo Ojala, from the Digital Systems
Laboratory (51}.

l. Recommendations Z 101-104, CCITT Yellow
Book, Int. Telecommun. Onion, Geneva,
Switzerland, 1982 :

2. "Punctional Programming, Application
and Implementation™, by Peter
Henderson, Prentice-Hall 1980.

3. "Punctional Languages for The Data
Processing Networks®, by Timo Moko,
Report 5/81 Helsinki University of
Technology, Telecommunication Switching
Laboratory.

4. "Protocol Representation with Finite-
State Mpdels™, by Danthine A. A.S5.,
IEEE Transactions on Communications,
Vol 28, Num 4.

5. "Specification and Analysis of
Communication in Distributed Data
Processing Systems", by Jukka Oranen,
Blectricity in Pinland 55, 1982,

6. "A Multimicroprocessor Controlled Data
Exchange - A Gateway to Public Data
Networks", by Kauko Rahko, Reijo
Juvonen, Tarmo Hiltunen, Presented at
6th International Conference on
Computer Communication, Londeon, 7-10
September 1982,

7. CCITT Study Group XI - Contribution No.
133, March 1982

BIOGRAPHY

Mr., Timo Moko was born in 1952 and
graduated in 1978 from the Helsinki

" University of Technology, where he is
currently empleyed. He is presently
collecting material for his licentiate
thesis. His research interests include
comminication protocols, system
verification, and applications of lazily
evaluated, purely functional languages.

INPUT TIMEOUT INTERNAL TIMEOQUT

OUTRUT SIGN2 SIGNZ

DECISION 'C1=0

THSK. ‘=t A:=A+1

SAVE 51,82 ‘ S1,8=

Fig. 1 SOL/PR and SOL/GR items

BLOCK MOD1:
PROCESS TERMINAL_HANDLER

STATE 2 'HAIT-FOR-CHAR';

INPUT ‘CHAR' FROM USER;
DECISION 'CHAR IS-CR,DEL-T'
COMMENT 'ASCII-SET-ASSUMED')
<CR>: OUTPUT 'ECHO-CR':
OUTPUT 'ECHO-LF';
TASK "END-THE-LINE':
OUTPUT 'LINE-READY' TO LIMNE_HAND:
OUTPUT 'SET-TIMEOUT-#2' IMNTERMNALJ
NEXTSTATE 3 "HAIT-FOR-ACK';
¢DEL) : _
TASKE 'LP:=LP-1' COMMENT ‘REMOVE-CHAR';
OUTPUT "ECHO-BS'
OUTPUT 'ECHO-SP';
OUTPUT 'ECHO-BS's
JOIN SETTO:
COTHERSD :
OUTPUT 'ECHO-CHAR';
TASK 'CHAR-TO-LBUF';
TASK 'LP:=LP+1';
SETTO:
OUTPUT 'SET-TIMEOUT~-#1' INTERMNAL;
NEXTSTATE 2 'HAIT-FOR-CHAR'J
EMDDECISION:

INPUT 'TIMEOUT-#1' INTERNAL;
QUTPUT * "LAZY FINGERS"™ ' TO USER;
OUTPUT 'DISCON' TO USER:
OUTPUT 'BREAK' TO LINE_HAMND:
NEXTSTATE 1 'IDLE';

INPUT ‘'BREAK' FROM LINE_HAND:
OUTPUT 'DISCOM' TO USER.
NEXTSTRTE 1 'IDLE';

ENDSTATE 2:

ENDPROCESS:
ENDBLOCK 3

Fig. 2 SOL/PR-example

HAIT
FOR

+DEL SET

ECHO

LP:=LP~] | REMOUE

Fig. 3 SDL/GR-forwm of the previous figure

Fig. 4 Components of the SDL-tool

SOL/PR- BACKUS/MRUR- [PICTORIAL
SOURCE oscrieTIoN | | [TEMS
LANGUAGE

TRANGLATION |
INTO LISP-
EYPRESSIONS
STAPLIF ICATION
65 REQUIRED
NT

UALIDATION /

\ UALIDATION

REPORT

PICTORIAL
QUTPUT

CONFEREMCE CO-CHAIRMEN
AALPH H- SPRADUE: JA
Cenarrman af Decimjnn Sojences
Urrssmity of Hawall
S Wdew Way
Handiuli, HE BEE2D
(L L]

BAUGE O SRAIVER
Compuier Scorrcn Ceoarimong
Uinereraity of

Southwes e Loc:siany
. D Bos 443N
Laftaysiie, LA TOR04
i 25 shos

TRACHK CHAIRMAN

DEDISION SUPPORT SYSTEME
SALFM B EPRAGLE, HA

WEMCAL INECHMATION
PROCESEING
THOMAS R COURNS
BAUCE D SHRIVER
TERRY M. WALKER
Lniverty ot
Bowthaesiam Lowialaan
R
TrE AN -CRENER
Umeminity of Wchigan
SOFTWARE
LARRY WEISSMAN
EedTech, ac,
OFFICE SYRTRME
AHD TECHRDLOGY
HAYMOMND B Al
Uniuarpty af Hamsali

CONTRIBUTING SPONSOR
COOADINATOR
BALM B ORAME
Lrmrmawrmity of Fionos
Gainwsllim

PROGAAM ADVIGDRY BOARD
ERIC O CARLSOM
Cahyargand Taufeaingen
WILLIAM B AEWLS
Uinverrasty ol Hawain
WILLIAM E HOWDEN
Lbnmarniy of Calilornie

- Ean Do

HELWUT K BERG

seerrywendl Cocporsle
Computer Scance Caninr

COMFERENCE COORDINATOR
EMILY M, FAND JORGENSEM
Cantnd i Tadcuties Dusalopment
Uity o Mawai
g Malim Way CI0T
s, HI PEE2T
LA AR 704
Catlar LN AW

HAWAII INTERNATIONAL CONFERENCE
ON SYSTEM SCIENCES lu:l-mv

Inmiitute for fhe

In Cooperation With

HICSS - 17 _j@_ @D

mﬂ‘

Advencamant ol
Declnlon Support Systama

Dr. Larppshietoaman
SofTech, Inc.

460 Totten Pond Eoad
Waltham, MA 02154

Mr. Timo Noko

Helsinki University of Technology
Telzacommunication Switching Laboratory
Otakaari 54

02150 ESPOO

Finland

Pear Mr. Noko:

Ya zre plasaed ta dnform wou that vour paper, Use of the CCITT
SDLi. to Engineer Communication Software, has been acrepred for
presentation at the Seventeench Annual Hawaii International
Conference on System Sciences. In the case of multciple
authored papers, we are corresponding with one author only;
will you please send a copy of this letter to any other co—
author(s) of your paper.

Your paper will be presented in a 90-minute session with two
ather papers. Unless you receive other instructions from your
session chairman, you should plan te limit your formal remarks
to twenty minutes, allowing ten minutes for comments from a
discussant and questions from the audience.

If specific comments gn the paper were provided to me by the
referees, they are enclosed. In some cases, referses comments
will be sent to you by your session chairman.

The enclosed materials should be submitted in preparation for
the conference:

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

